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Einstein's Relation between Diffusion Constant 
and Mobility for a Diffusion Model 
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An Ornstein Uhtenbeck process in a periodic potential in R '~ is considered. It 
has been shown previously that this process satisfies a central limit theorem in 
the sense that, by rescaling space and time in a suitable way, the distribution of 
the process converges to that of a Wiener process with nonsingular diffusion 
matrix. Here a rigorous proof is given of a version of Einstein's formula for this 
model, relating the diffusion constant to the "mobility" of the system. 

KEY WORDS: Diffusive behavior; Einstein relation: Ornstein-Uhlenbeck 
process; geometric ergodicity. 

1. I N T R O D U C T I O N  

Einstein ~2) showed that ,  as a consequence  of the molecula r -k ine t ic  theory  of 
heat, mic roscop ic  par t ic les  suspended in a viscous l iquid undergo  an 
i r regular  m o t i o n  which can be descr ibed by  the diffusion equa t ion  

~ f  D 
~f 

~?t 2 

where f ( - ,  t) is the densi ty  of the suspended  part icles  at  t ime t, A is the 
Laplac ian ,  and  D is a constant .  F o r  D he es tabl ished the re la t ion 

D = 2 k T ~  (1) 

where k is the Bo l t zmann  cons tant ,  T is the abso lu te  tempera ture ,  and  :~ 
is the "mobi l i ty"  of  the part ic les:  if an external  force K acts on a part icle,  
it acquires  a mean  veloci ty v(K) due to this force; by Stokes '  law, the 
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quotient ~ := v(K)/K is independent of K and equal to (6~qr) -1, q being 
the viscosity of the liquid and r the radius of the suspended particles. 

Recently, studies have been done aimed at a rigorous mathematical 
understanding of Einstein's formula (1).I3) 

In this paper I give a rigorous proof of a version of (1) for the 
following process modeling the motion of a particle in a changing 
environment: 

dVt = -~V,  dt - ~'(Xt) dt + a dW, 

dX,= V, dt (2) 

Here W, denotes a standard Wiener process in R, ~b is a periodic function 
in CS(R), and/~ and o- are positive constants. 

The model (2) describes an Ornstein-Uhlenbeck process in R with 
an additional drift of the velocity coming from a periodic potential q) 
depending on the space coordinate. This model is understood as an 
approximation of the more complicated situation where the periodic ~ is 
replaced by an ergodic random potential ~ representing the "random 
environment" of the particle. 

Remark. I here restrict consideration to the case (2) of one-dimen- 
sional V and X to keep the notation simple. One easily checks that the 
same proofs work in higher finite dimensions. 

The model (2) has a unique solution (V,  Xt) for each given 
measurable (V0, X0), (Vo, Xo) independent of (W,)tER+. (I) 

Since q~ is periodic, the process (V,, X,) can be considered as a process 
with state space E := R • Tor, where Tot is the one-dimensional torus with 
the length of the period of ~. The invariant measure of (V,, X,) on E is 

~(dv, dx) := C-l exp l - 2  ~--- q~(x)- ~---- v2] dv 0.2 

with 

In the situation of our model, we will give meaning to Einstein's 
formula in the following way. In ref. 5 it has been shown that the process 
(2) has "diffusive behavior" in the sense that it satisfies the following 
central limit theorem (the corresponding result for ergodic random ~ has 
been obtained by Papanicolaou and Varadhan~4)): 

T h e o r e m  1. Let (V,, Xt) be the solution of (2) for given arbitrary 
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(Vo, Xo). For e > 0  define the process X ~ by X ~ ( t ) =  eX(e  2t). Then for 
~ 0, the distribution of X ' in C[0, oo) converges weakly to the distribu- 

tion of a Wiener process with diffusion coefficient 

D : = 2  VP,  V d t d ~  (3) 

Here Pt denotes the transition semigroup of the process (2) and the 
functional V: E --, R is given by V(v, x )  = v. 

The diffusion coefficient of the limit Wiener process given by this 
theorem will be taken as the "diffusion constant" in Einstein's formula. The 
"mobility" of our system will be defined as follows. In our framework, the 
motion (Vet, Xet) of a particle which is driven through the medium by an 
external force e E R is modeled by 

d V ~, = - fl Vet dt - ~ ' ( X ~ )  dt + cr d Wt  + e dt 
(4) 

dX~t = vet dt 

(I assume the mass of the particle to be 1). As we shall see in Section 2, for 
each e ~ R, (Vet, Xet) has a unique invariant probability measure 7~ e on E. 
So the "mean velocity" fe of the particle driven by the force e can be 
defined as 

fe:= fevdge 
The mobility is defined by 

d 

e = O  
~:=~ee (5) 

The main result of this paper can now be stated as follows: 

T h e o r e m  2. The mobility ~ is well defined by formula (5) and 

D = a2/~-1or 

We note that the quotient D/c~=~r2~ -1 given by this theorem equals 
4 ~ e l  2 5 v drc, which can be understood as four times the mean kinetic energy 
of a particle, in accordance with Einstein's formula (1). 

The proof of the theorem is given in Sections 2 and 3. In Section 2 we 
show that the processes ( V  e, x e , )  are uniformly geometrically ergodic for e 
in a neighborhood of 0. This result is used in Section 3, where we follow 
up a perturbational approach to establish the differentiability of ge and ~e 
in e and to derive an explicit expression for c~. 
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The idea of this derivation is roughly as follows. If ~e has a smooth 
density fe which is differentiable in e (with smooth derivative F: E--* R), 
then f~ can be written in the form 

and solves 

fe=fo+eF+re,  re=o(e) (6) 

L~-e-~v (fo+eF+re)=O (7) 

where fo is the density of ~0 and L* is the adjoint of the generator of the 
process (2) [notice that L* = L* - e ~?/c~v is the adjoint of the generator of 
(4)]. We therefore get the hierarchy of equations 

L~f  o = 0 (8) 

L , _  0 ,. -2/3 
o P = ~ v J o = ~ -  Vfo (9) 

( L * - e  ~ )  r~=e2 ~--~ F (10) 

Equation (9) is solved by 

2p 
F(v, x)= ----~ foG(--v, x) 

with 

G = f ?  PzVdt (formally, G = L o ' V  ) 

[using the reversibility property L*(fo~)=foLoO, where 
O(-v, x) for O: E ~ R]. 

Hence, 

d f Vd e 
de E e=o 

=re V. F dv dx 

0" 2 V . P t V d~ dt 

/3D 
i f -  

r x)= 



Einstein Relation for  a Di f fusion Mode l  1069 

The main task will be to clarify in which sense these equations are 
meaningful; in particular, it has to be shown that the entities defined exist 
in a suitable sense. For this purpose we need the ergodicity results of 
Section 2, which are established using pure probabilistic methods. 

I finish this section by introducing some more notation. By L~ I 
denote the generator of the process (4), i.e., 

0 ~ {~2 82 
L~=v~x+ [-/~-4~'{x)+e] +Tar- 7 

P~ denotes the corresponding semigroup. For  pO I also write P,. fix for 
2 e E is the Dirac measure in .?. V: E --* R is defined by V(v, x) = v. Leb is 
the Lebesgue measure on R 2 or E, I.?l the Euclidean norm of .~eR 2, V~F 
the 2 gradient of a function F(s 2 ~ R( I use letters with bars x, y .... to 
denote pairs (v, x ) e E  or (v, x ) e R  2 and write . ~  for (V~, X[) and X, for 

= ( v o, x o ). 
If not indicated otherwise, I consider X~ as a process in E (rather 

than R2). 

2. THE ERGODIC BEHAVIOR OF THE PROCESSES R~ 

In this section I show that the processes JT~ are geometrically ergodic 
uniformly for e in a neighborhood of 0: 

Theorem 3. The processes )7~ have unique invariant probability 
measures ~e on E. For  arbitrary A > 0 and bounded B _  E, there exists 
q < 1 such that 

�89 ~ell ~ q '  (t>O, 2~B, [el<A) 

Proof. The idea of the proof is that the processes JT~ behave almost 
like processes on a compact state space since, because of the friction term 

- V ~, dt in (4), states at high velocities can be well controlled. 
Fix A > 0 and B _~ E bounded. Choose v0 > 21/2(sup.~ ~ R I~'(x)l - A)/} -1 

large enough so that 

K : =  {((v, x), (u, y ) ) eEZl l (v ,  u)l ~<vo} (tl} 

contains B 2. The set K is used as a compact approximation of E2; the 
condition on Vo will be used to ensure that, due to the driving forces, a pair 
of particles will never stay for too long outside K. Let 

x 9 e 1 e e ;1, := 5IIg),~P,-&~P, II (2, f leE) 

822/55/5 6 - i4  
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and 
qte :~_ sup x,.q~,, e (12) 

It is easily shown that ~-< e r/, ..~ 1 and t/, is nonincreasing in t. 
Let (s  [e l<A,  and take any coupling (YT, YT) of two 

processes (4) starting in s 37, respectively. Let 

:=inf{t ~> i I (X~, Ye~)~g} 

and let v be the distribution of g on [1, ~ ) .  We then get, using the semi- 
group properties of P~, the estimate 

.? ~ e < z ~ f  e tl t ..~ v(ds)n,_,. ( t>  1) 3 [1,t3 

and, in fact, by a coupling argument, 

-e'Y~/~ ~ [v({1 })-~Sqt/~_~ + f  v(ds)rl~_ s (13) 
q 1,t] 

where 

6 : = v ( { 1 } I -  -~ 211~1-~211 (14) 

with #1 the distribution of )(11K(X1, Y1) on E, and ~2 the distribution of 
Y1 lx (X1 ,  Y1) on E. 

Notice that 6 and v depend on 2, )7, and e; we will use the notation 
6(2, 37; e), v(ff, )7; e) to make this dependence explicit. 

Our aim now is to show that, for suitable coupling of X,, Y,, 

inf 6(s P; e) > 0 
e ~ [ - - A , A ~  

x, f c K  

and that there is a probability measure f on [1, oo) which is stochastically 
larger than v for all (s 37)sK, e e  [ - A ,  A I. It will then be possible to 
derive from inequality (13) uniform exponential decay of ~' Yt/~ in x, y s K, 
]el ~A.  I choose the independent coupling of (X~, Y~). 

The following rather technical proposition gives an estimate of the 
distribution of (X~, Y~) for large velocities and of the distribution of g, by 
comparing with a simpler process, using the fact that for large v, the drift 
of V e in (v, x) is governed by the term - f l y .  

Proposit ion 4(a) .  Let 

c := sup IqS'(x)t 
x E R  

and let ~>  cfl 1. 
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(i) Let re be the stopping time 

T e :=inf{t >011V7l ~<ig} 

Then for all sufficiently small 2 ~> 0, namely 0 ~< 2 < (riO- c)2(2~r 2) 2, there 
exists if(2) < ~ such that 

E.,,x/exp(2Ze) ~< exp[ff(2)(lv] - 15)] 

for all ( v , x ) e E  with tvl>~ig, for all sufficiently small [eleR, namely 
Pet < pig-  c. 

(ii) Let m~, be the measure on R+ defined by the density F~: 

0 if u -..< ig 
F~(u) = (15) 

2 a a - - ~ e x p [ - 2 a a  2(u-tS)]  if u>ig 

with a < flig-c. Let < denote stochastic ordering of probability measures 
on R. Then the following holds: for all sufficiently small Jel, namely 
4el ~< f i g -  c - a, if the distribution of I V~[ at time t = 0 is <m~ (for example, 
if IVy] ~<ig a.s.), then for all t > 0  the distribution of IVTI is .<m~. 

(b) Let 15> 21/2cfl 1. Consider two independent processes (4), X~= 
(V~, XT) and (~Vt)= (VT, Y~). Then: 

(i) For the stopping time 

r~ :=inf{t ~> 0[ [(V~, U~)[ ~<ig} 

for all 0 ~< 2 < ( f i r -  21/2c)2(2a 2) 1, there exists ~(2) < ~ such that 

E(w.x~,~.,~)) exp(2r~) ~< exp[ ~(2 )([(v,u)[ - f)]  

for all (v, x), (u, y) E E with [(v, u)] ~> f; for all sufficiently small [el, namely 

lel ~< flig/x/-2 - c. 
(ii) If the distribution of (VT, U~) at t = 0 is <m~, m e being defined 

as in (15) with a < ~ - 2 ~ / 2 c ,  then for all t > 0 ,  the distribution of 
t(vet, U~)I is "<me, provided [el is small enough: lel < ( r i i g - a ) / , ~ - c .  

Proof of  (b) [the proof of (a) is similar and somewhat simpler]. I 
give a description of the idea, omitting the technical details of the proof. 
Let f>21/2cfl-1 be given. For e e R  consider two independent processes 
(4), , ~=(XT,  V~) and ~V~=(y~, U~). Let h: R 4 ~ R + ,  h((v,x), (u, y ) ) =  
(v2+u2) 1/2, i.e., the Euclidean norm of (v, u). The process h(X e, }re) 
behaves, according to Ito's lemma, like a diffusion in R with diffusion 
constant a (since the driving Wiener processes of X~, Y~ have been chosen 
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independent) as long as h(X~, Yet)cO , and for h~>/~ the drift (which is 
negative) has absolute value >>.fih-21/2(lel+c)>~fl~-21/Z(lel+c)>a 
(provided lel is small enough). So a comparison of the process h(X~, ye) 
with the process in R, 

a, z~>O 
dZ, = - g ( Z t )  dt + a dW, g(z) = a, z < 0 

(which can be made precise by a coupling argument) shows 

where 

E(:~.y)exp(2r)<~Ehce.yl eexp(2r/) [h(s 37)>~, 2 ) 0 ]  

~ / :=inf{ t>~0lZ,=0} 

Similarly, if the distribution of h(X~, ye) _ ~ at time t = 0 is -< the distribu- 
tion of IZ, I at t = 0, then for all t > 0 the distribution of h(X7, y e ) _  ~ is 
the distribution of IZ~l (provided ]el is small enough). So the assertion of 
Proposition4b follows by noting that (i) for 2<a2(2aa) -~ there exists 
0(2) > 0 such that 

E_ exp(2t/) = exp [~b(2)z] (z~>0) 

(see ref. 4) and (ii) if the distribution of IZol is < the invariant probability 
measure of [Ztl, 

m(dv) :=2aa  2 e x p ( - 2 a a  2v)dv (v>~O) 

then for all t > 0  the distribution of [Z,I is -<m (which is also shown by a 
coupling argument). 

By combining Proposition 4(b)(i) and (ii) with ~ = Vo, it follows that 
for the stopping time f= in f{ t>~ l l (X t ,  Y~)sK}, K given by (11) for 
(2, 37)eK, [eL <A,  one has [here M~x,.~) is the distribution of (X~, Y~) at 
t = 1 with X; = 2, f~ = 37] 

( .  

exp(2~) = Je2 El~"e) exp(2?) dM~x.v ~ 

~<L := exp[~k(2)v] 2aa 2 exp(_2a~r-2v) dv 

< 0 0  

[with a =  vo-21/2(A + c)fl 1] for sufficiently small )4 [we can assume that 
in Proposition 4(b)(i), 0 ( 2 ) 4 0  as 2 ~ 0 by the dominated convergence 
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theorem of measure theory]. Consequently, ~ is stochastically smaller than 
the probability measure f on [1, oo) with density 

{2L exp( -2 t ) ,  t>>.to:=ln(L)2 1 
S(t) = O, t < to 

for all lel ~< A and starting points of (X~, YT), (2, y )~  K. 
To give an estimate of 3, we use the following result. 

Proposition 5. For any t > 0, 2 e R 2, and e e R, 6xP~ has a density 
with respect to the Lebesgue measure. With respect to the variational 
norm, 6xP7 depends continuously on e and .~. Moreover, 6~P~ is three 
times differentiable in y in the sense that for any t > 0, for sufficiently small 
As 2, 6x+~xPe~ has a density with respect to 6xP~ which is in L2(6~P~) 
and there are functions Jl(ff): E - - , R  2, J2(x): E ~ R  4, J3(s E - - , R  8 in 

e L2(6~P,) such that 

d(6~ + j.~P~)/d(6~P~) 

= 1 + J l ( x )  A x  + 1J2(x  ) A)c 2 

+~J3(s163163 r ( A s  as As 

holds in L2(6xP~). [Here Aft ~ is to be understood as an element of 
R 2' (componentwise multiplication) and J~A2 as scalar product.] 
[IJ1(s is bounded in 2 ~ E. 

The proof of Proposition 5 is based on the following result. 

Theorem 6 (Cameron-Martin-Girsanov formula, cf. ref. 6, Theorems 
6.4.2, 8.1.1). Let l e N ,  6: [0, o o ) x R t ~ R  l, 7: [0, oo)xRl---,R t, and 
cr [0, oo) x R t ~ S~, where S~ is the set of symmetric, nonnegative-definite, 
real lx  l matrices, be bounded and measurable. Let P be the distribution 
on C([0, oo), R t) of the process 

dZ~=6(t ,Z,)dt+c~(t ,Z~)d~t/; ,  Z o = x e R  ~ (16) 

(-#F is the /-dimensional standard Wiener process), and Q the distribution 
of the process 

dZ,=(6+~#)( t ,Z , )d t+c~( t ,Z~)d~r  Z o = x  (17) 

Then for all t > 0, Q ~ P with respect to the ~-algebra ~ on C[0, oo) which 
is generated by the mappings C[0, oo ) ~ Ra: g --. g(s), 0 <~ s <~ t, and 

dQ/dP(g)=exp  (?(u, g(u)), dg(u) ) 

--~ <~,(u, g(u)), ~(u, g(u))> du 

where g ( t )=  g ( t ) -  ~'o 6(u, g(u)) du. 
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Remark 7. The boundedness assumption on 3, 7 , and ~ in 
Theorem 6 can be dropped if 3, 7, and c< are continuous and satisfy 
the following condition ensuring the existence of a solution of (16), (17) 
(see ref. 1, Satz6): 3( t , . ) ,  c~(t, .), (3+7~) ( t , - )  are Lipschitz continuous 
uniformly in t >~ 0. This follows from Theorem 6 by approximating 3, 7, and 
c~ by bounded functions 6,, Yn, and c<~ (n e N) which coincide with 6, 7, and 

on [0, ~ ) x  { x e R l l  Ixl ~<n}. 

Proof  o f  Proposi t ion 5. (I here consider the process J?~ as a process 
in R 2 rather than E and prove the corresponding statement of Proposi- 
tion 5 for this case; it then carries easily over to E as phase space, so I will 
not make any distinction in notation.) 

(i) Exis tence o f  a Dens i ty  o f  ~ P ~ .  Theorem 6 is applied as follows: 
P is the distribution of (4) on C([0, t], R ~) with X~(0)=s  Q is the dis- 
tribution of the process 

d2, = ~, dt, d~/~ = a d W ,  ( Vo, 20)  = 2, 

The result then follows by projecting P and Q down onto the t coordinate 
and noting that the projection of Q [i.e., the distribution of (V ,  X~) in R 2] 
has a density with respect to the Lebesgue measure. 

- - e + a  (ii) Continuity .  Theorem 6 is applied to the processes J?~ and X,  , 
a ~ R, where a ~ 0. 

(iii) Differentiobility. I show differentiability of first order; differen- 
tiability up to third order is proved in a similar way. 

: rc--e  For any .~ ~ R-, denote by X~ the solution of (4) starting in ~. Fix 
t > 0. We will first keep ~ and A~ fixed and compare the processes 

( v s ,  x , ) .  - '  ' X s = ( := __~ = .= X s and V,, Xs') ~ + ~  

We use a transformation of )]" to make Theorem 6 applicable. Take 
F: R2x R---, R four times continuously differentiable such that F ( 0 , . ) =  0 
and for each Aft = (Av, Ax)  e R 2, 

F(A~2, O) = Av, F(A2, t) = O, 

Define the process J~s = (~',, 2,)  by 

P~ = V;  - F ( A X ,  s )  

fo F(A~, s) ds = - A x  

2s  = X's - F(A~, r) dr - Ax  
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Then J~o = )70 = -~ and -~t = J(;. By Ito's formula,  ( ~ , ,  2 , )  satisfies 

d2s=V~ds 

d~'~ = ~s F( AYc, s) ds - fl( V, + F( Aff, s ) ) ds 

+el)' 2s+ F(A2, r) dr+Ax ds+adW 

Let 
0 

G(s, z, A2) := ~ F(A~, s) - fiE(A2, s) 

+q) ' (z ) - -~ ' (z - fs  r) dr+Ax) 

that is, the difference of the v drift of the processes (V,, X,), (V,, X,) at 
(s, (w, z))e R+ • R -~. (Notice that these two processes both start at x e R 2.) 
Let P and Q be the distributions of (V,, X~), (Vs, X~), respectively, on 
C([0, t], R 2) (the space of paths up to time t with the a-algebra generated 
by the projections on the s coordinate, O<<.s<<.t). By Theorem 6 and 
Remark 7, Q ~ P and 

~[(Vs ,  X,),<~,]=exp G(s, xs, A2)a-~ d~ 

- ~  fo G2(s, x,, A2)a -1 ds 1 

where g,=v,+~'oflv~+~'(x~)dr {which is a Brownian motion on 
C( [0, t], R z) with respect to P and the canonical filtration }. As G(s, x~, A2,) 
is continuously differentiable in s for P-almost all (v,,x~),<_, [with 
derivative 

d__ds a(s, Xs, J~)  = [ ~  a(s, x,, ~x) + ~az a(s, ~, J~)  . . . .  �9 ~s] 

this expression can be rewritten as (see ref. 1, Corollaries 4.5.10-4.5.12) 

[(v,, xs),~,]  =exp G(t, x,, A~)a ~,-G(O, Xo, A:?)a-l~o 

- fi ~sG(S,X,,AYc)a 'Osds 
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From this we see that dQ(AYc)/dP [-we write Q(As to indicate the 
dependence of Q on Ag] is pointwise differentiable in As (s still being 
fixed) with derivative at As =0,  

V ~. ~dQ(A~) [-(vs, X~)s<~t] .~ 
= 0  

=V~xG(t, xt, 0)a l~Tt-V~xG(0, Xo, 0)a-l~o 

- Vj_~-~sG(S,x,,O)~-l~,ds 

= VaxG(s, Xs, 0)~ -1 d~, 

Using the fact that ~ is a Brownian motion with respect to P and that 

sup IG(s, z, 5:)1, sup O_ G(s, z, if) 
s<~t,z~R s<~t,z~R (7S 

converge to 0 as Aft--, 0 (by the assumptions on F), one sees that for A~ 
sufficiently small, dQ(AYc)/dP~Lz(P) and, using uniform (in s<~t and 
z ~ R) differentiability of G(s, z, A f),  (~/3s)G(s, z, A~) in A~ at Aft = 0, that 
dQ(Af)/dP is differentiable in Ag at Af t=0  in the sense of L2(P). 
Moreover, 

V ~ dQ(AYc) [ IIV ~a ( s ,  x .  O)llL~..) ds 
dP a~=o L2(p)= Jo 

(by the isometry property of the stochastic integral), which is bounded in 
~, since V~G(s,  z, 0) is bounded in s~< t, z e R. By elementary measure- 
theoretic reasoning, these properties are preserved under projection onto 

e K the t coordinate, i.e., 3~+a~,P t .~ c~P~ and d(c~+AxPt)/d(6xP~) is differen- 
tiable in A~ at As = 0 in the sense of L2(6~P~) and the L2(3~P~) norm of 
the derivative is bounded in ~. 

We now turn to the estimate of 6 defined by (14). Let fT(-~, .) denote 
the density of cS~P 7 with respect to the Lebesgue measure existing by 
Proposition 5. For independent 
(s 9 e K), we get the estimate 

3()~, 3~, e) ~> p(ff, )9, e) f?  

where 

D e  - - e  Xt, Yt starting in g,)~, respectively 

min(f~(s ~), f~()7, .~)) d Leb (18) 

R : =  {(v ,x)~gl lv l  ~ ( A + c ) ~  -~} 

p(Sc, .9, e) = min(axP{(R), 6yP,(K))" e " 

(so/~2 ~ K) 
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We know that for all 2EE, f~(2, 5 ) > 0  for almost all 5 c E  (with respect 
to the Lebesgue measure), since 6eP~(D) > 0 for each D __ E with positive 
Lebesgue measure. So the right-hand side of (18) is strictly positive for all 
(2,)~), lel ~<A. Furthermore, it depends continuously on ~, )5, and e by 
Proposition 5. Thus, 

= inf 6(2, ~,e)>O 
2, P~K 
l el ~< A 

Consequently, 

f l  r/~< q~ s f f ( d s ) + ( ~ { 1 } - 6 ) q ~ _ l  (tet<~A) 
1 

We therefore see from the following lemma (using monotonicity of t/~) that 
for some ~, C > 0 

e-< Cexp(- -~ t )  (t>~O, LeI<~A) (19) Y/t --~ 

L e m m a  8. Let m be a nonnegative measure on [1, oo) with 
m([1, oo)) < 1 and ~[1.~) exp(yt) m(dt) < oo for some 7 > 0. Define rh for 
t ~ R inductively on intervals (n, n - 1 ], n ~ N,  by 

t / t = l  for t ~ ( - o o ,  0] 

t/ ,= f[1.~) rh s m(ds) 

(obviously, there exists exactly one function ~/, satisfying this). Then for 
some c, to>0, rh~<cexp(--Kt ) for all teR.  

Proof of Lemmo 8. Let M : = r n ( [ 1 ,  vo)), D :=~[1,~)exp(Tt)m(dt). 
For each t > 0, m([t, oo)) <<. D e x p ( - 7 0 ,  so m is stochastically smaller than 
the measure rh on [1, oo) having as density with respect to the Lebesgue 
measure the function 

jc(t) := ,--I~D e x p ( - y t )  ifif t>~t~ < to 1) 

[one easily verifies that to ~> 1 and ~ )~(t) dt = M].  Now define 0~: R -~ R+ 
inductively by 

~ , = 1  for t e ( - o % 0 ]  

' O, ; ~ ( d s )  = , ~ , - , r  ds 
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Using monotonicity of 0, and the fact that rh~>m in the stochastic 
ordering, one sees by induction on intervals (n,n+ l ]  that ~,~>~/,, so it 
suffices to establish the estimation q, ~< c exp( - t c t )  for some c, ~c > 0. We 
choose ~ so that 

~t c~ 7D e x p [ - ( 7 - K ) s  j ds~< 1 
0 

~o ~ S Ewhich is possible since ~o f (  ) ds = M < 1] and c so that q~ ~< c exp( - tcs) 
in E -  oo, 1 ]. Then it follows by induction that 

ft  ~ 
q, <-G c e x p [ - K ( t - s ) ]  .TDexp(-?s)ds 

o 

~< c exp( - Kt) 

for all t ~ R. 
We now complete the proof of Theorem 3. We show that for any e ~ R 

with [e[<A and (v , x )~E with Ivl<~Vo (and hence for any e e R  and 
(v, x)EE, since A and v0 defined earlier can be taken arbitrarily large), 
6(~.x)P 7 as a function of t is a Cauchy sequence (with respect to the 
variational norm). For  any t, s > 0  we have, by arguments as used to 
establish (13), 

�89 ~ f v<X .... )(du)tl~ : 
[o,t]  

where y(x,s,e) is the distribution on [0, oo) of the stopping time 

:= X ~ ~ K} r <+'s'~) { i n f u > ~ O [ ( . ,  Yu)e 

X e, Y] being two processes (4) coupled independently with initial distribu- 
tions 6~, 6xP~, respectively. From Proposi t ion4 we see that there is a 
probability measure ~ on [0, 0o) which is stochastically larger than v (-+'~'e) 
for any s>~O, 2=(v , x )EE  with Ivl<~vo, e~R  with [ej<~A, and which 
satisfies ~([1, oo ) )~<Cexp( -~ t )  for some C,~[>~0. So we have for all 
t, s>~0, using (19), 

1 / ~l[d~P~_:-~xP~l[ ~ ~(du)q~_~ 
[0, t] 

~< q,~/z + f(Et/2, c~)) 

~< C exp( - 2t) (20) 
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with C := max(C, C) and 2 :=inf(~, ~)-2 -1. So 3~P~ is indeed a Cauchy 
sequence. Consequently, the corresponding densities f~(# , - )  existing by 
Proposi t ion4 have a limit fe in Lj(E) (with respect to the Lebesgue 
measure) which does not depend on 2 by (19). Let r~ be the probability 
measure on E associated to the density F .  Relation (20) shows that 

1 ~ ~< C exp(-)~t)  (21) 

for . f=(v ,x)eE with lv[~<v0, lel<<.A, and it easily follows that 7Ze is 
invariant with respect to pe. By noting that �89 < t for all t > 0, 
which follows from Lemma 5 and almost sure positivity of.f~,(2, .), we s e e  

that 

�89 (lel<~A, I V(~)I ~< Vo) 

for some q < 1. This finishes the proof of Theorem 3. 

3. C A L C U L A T I O N  O F  T H E  M O B I L I T Y  

In order to establish the differentiability of ~e and ~e in e and to 
calculate the mobility, I will now make precise the perturbation argument 
sketched in the introduction. 

Instead of working with L*, I rewrite and solve Eqs. (8)-(10) in a 
weak form so one does not have to care about the smoothness properties 
of the involved functions. I use Cg(E):=space of twice continuously 
differentiable functions q~: E ~ R  such that ~o(v,x)~O if tv[ ~ as the 
space of test functions and write ( f ,  ~0 ) for SefiP d Leb, f :  E ~ R. 

The next theorem gives an expression which presents a weak form of 
(6). (In particular, in view of Propositions 13 and 17, this shows that roe is 
differentiable in e in a weak sense.) 

T h e o r e m  9. For each e~R,  

~o dee=  ()Co, ~o) + e ( F ,  (#) + e  2 

with 

(H,P•cp)dt [~o ~ Co2(E)] (22) 

2fl 
F: E ~ R ,  F ( v , x ) = - ~ f o ( v , x ) G ( - v  , 

fo a: E--, e ,  a(~) = P, V(~) & 

H: E ~ R ,  H(v,x)=~-~F(v,x) 

x) 

defines a finite measure 77 e on E which is invariant with respect to PT. 
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ProoL I first show that the expressions occurring in Theorem 9 are 
well defined. 

P r o p o s i t i o n  10. The function G is well defined and differentiable. 
For any ~c > 0, there exists D > 0 such that for all 9~ = (v, x) ~ E, IVxG(2)I ~< 
D exp(~ Iv]). 

I first show the following result. 

I_emma 11. For any ~:>0, there exist i f > 0  and C > 0  such that 
IP, V(v, x)[ ~< C exp(~: Ivl) exp( - ~t) for all t > 0, (v, x) e E. 

ProoL Choose Vo>C:=sup{ j ( / ( x ) l l l x eR} .  By Theorem3, there 
exists q <  1 such that for all (v, x ) e E  with Ivl ~<Vo and t > 0  

�89 ~<q' (with zr := Zro) (23) 

Consider the first entrance time into K := {(v, x)~ E[ Iv[ ~< Vo}: 

r := inf{t ~> 0 I)(,e K} 

By Proposition 4, for 0 < 2 < (fly o -  c)z(2~r 2)-~, there exists ~(2) < 
such that 

E<v,x) exp(2t) ~< exp [O()~)([vl - vo)] (24) 

By the dominated convergence theorem, we can assume that ~(2)--+ 0 as 
2--+ 0. By Tchebychev's inequality, (24) implies 

P(v,x){z>s} ~<exp[O(2)(lvl-Vo)] exp(-2s) ,  s > 0 ,  (v, x )mE (25) 

For any (v, x ) e E ,  if # denotes the distribution of ~ on R+ under the 
condition J(o = (v, x), we have, for t > 0, using (23) and (25), 

1 
Ila<~,x)P,- ~ll 

f2 <<. #(ds)qt-s+P(~,x~{~>t } 

<~P<:.x, {r<~2} q'/2 + P<:,x){r> t} 

<< q,/2 + exp[~(2)(lvt - v0)] exp ( -262)  (26) 

We further have, for any l > 0, t > 0, and (v, x) e E, 

IP, V(v, x)l <~ IP, Vl(v, x)l + IPt( V -  VZ)(v, x)t (27) 
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with 

and 

vl: E ~ R ,  U ( v , x ) = ~  v if I v l~ l  
~o otherwise 

IP, U(v,x)l  

<~llla~v,x)P,[I 

21q r/2 + 2l exp [r v] - Vo)] exp(-2 t /2)  (28) 

IP,( v -  v')(v, x)l 

<~ u G(du) [by Proposition 4(a) if Iv[ > c 
axlv ,  l) 

(in particular, if Ivl > %)] 

f; <~2(fiv-c)~ 2 e x p [ - 2 ( f l v - c ) ~  2 ( u - v ) ] u d u  
ax(v,  l) 

~< (max(v, l) + a2[2(fiv - c)] - i)  

�9 exp[-2( f lv  - c)~ 2 max(v,/)]  (29) 

For Iv[ ~< Vo, we have, instead of (29), 

IP,( v -  v~)(v, x)l 

~ fm~ Uv~o (du) 

(max(vo, l) + a2E2(fiVo- c)] 1) 

�9 exp[ - 2(fly0 - c)~ -z max(vo,/)] (30) 

(by (26)] 

Returning to the statement of Lemma 11. let K > 0  be given. Choose 
Z > 0  such that 2<(flVo-C)2(2a~-) -1 [to make (24) true] and ~0(Z)<~c. 
Now taking ~<min(2/2,  - ( l n  q)/2, 2(flVo--C)a -2) and setting l =  t in 
(28) (30), we see that in each of the inequality chains (28) (30), the last 
expression is ~<Cexp(~clvJ)exp(-fft) for some C > 0 ;  so it follows by (27) 
that for some C > 0, 

[P, V(v, x)l ~< C exp(~c Iv[) e x p ( -  ~t) 

for all (v, x ) ~ E ,  t > 0 .  
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I now continue the proof of Proposition 10. 
From Lemma 11 we see that it makes sense to define the function G 

pointwise by 

;o G(2) := P, V(2) dt 

We further see, using Proposition 4(a)(ii), that for each 2 e  E and t >  0, 
P,V~Lz(6xP,) for all s~>0 and that for each ~c>0, there exist i f>0 ,  
C' > 0 such that 

IPP, VIP L2(~.~,e,) ~< C'  exp(~c Ivl) exp( - ~s) 

so for all t > 0 ,  S~P, Vds exists in L2(6~L,x)Pt) and has L2(6(v.xlP,)- 
norm ~ C'ff -~ exp(x Ivl). By Proposition 5, the density of 6~P, with respect 
to 6xP ~ is differentiable in )7 at )7= )? in L2(6xPt) and the derivative has 
L2(6xP,)-norm bounded in 2. By H61der's inequality (applied to the 
probability measure 6~P,) it follows that for t > 0, 

Ps v(2) as = P~ v(~) d(6~P,)(f) ds 

is differentiable in 2 and for any K > 0, there exists C"> 0 such that 

) P, V(v, x) ds <<. C" exp(~c Ivl ), (v, x) e E 

The proof of Proposition 10 is therefore finished by the following claim: 

k e m r n a  12. For each t >0 ,  S; Ps V(2)ds is differentiable in 2. The 
derivative is bounded in 2. 

Proof. Consider, e.g., the norm in R 2, 

II(v, x)ll = Ivl + Ixl 

Let 3(2)eR 2 for 2 e R  2 denote the drift of the process (2) in 2. Then 
obviously 

116(2)- 6()5)11 ~ [1 +/~ + max Io"(x)l ] 1[2- )511, x, y e R  2 
x G R  

For any 2, A2 e R 2, we can therefore choose a coupling of two processes 
(2) J7 t and JT; starting in 2, s + A2, respectively, on a probability space f2 
such that for all s > 0, co e f2, 

II J?s(O) - J?'(co)ll ~< [IA~II exp[(1 +/~ + max IO"1 ) t ]  
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This shows that for any s A.~ ~ R 2, s > 0, 

[P~V(X+Afc)-PsV(2)t<~l[AYcllexp[(l+fl+maxt~b"l)t] (31) 

As a consequence of Proposition 5, we know that Ps V is differentiable for 
each s > 0 [since VE L2(6~Ps) for any . ~  R 2 by Proposition 4]. Relation 
(31) shows that V~PsV(s is bounded in . ' ~ E  and O<~s<~t, t fixed. This 
completes the proof of Proposition 10. 

Proposition 13. For all A >0,  there exist C, p > 0  such that for 
each q) ~ C2(E) and t > 0, 

[(H, P~0)[ ~< sup [q)()?)[ C e x p ( - p t )  
x E E  

for all e ~ R with [el ~< A. 

Proof. By Proposition 10, for some C1, C2 > 0, 

[a(v, x)[ ~< 6"1 exp(C2 Iv[ ), (v, x) e E (32) 

Consequently, for each ~ > 0, there exists C > 0 such that 

[H(v,x)[<~Cexp(-~[vt), (v,x)EE (33) 

Let H + :=max(H,  0), H :=max( - -H,  0). As a consequence of (32), 

feH+ dLeb= fEH dLeb :=m 

Given A >0,  take Vo> (c+A)p 1 Define for ie[ < A  the stopping time 

re :=inf{t>~011V~[ ~Vo} 

By Proposition 4(a), there exist ,i, 2' > 0 such that for all e with ]e[ < A and 
all (v, x ) e E  with [v[ >~Vo, 

Eo:,x ) exp(2z~) ~< exp[2'([v] - Vo)] 

It follows with (33) that 

B := sup m.  Em 'N+L~b exp()~z~) < oo (34) 
e ~ R  

le/~< A 

By Theorem 3, there exists q <  1 such that for all (v,x)~E with Iv[ ~<Vo 
and for all e~R with lel ~<A 

I]6<~.x)P~-~ell <~2q' (t>~O) (35) 
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Let /~e be the distribution of q~e on R+ for the initial distribution of J(~ 
H + m 1 Leb. Then 

r[(H+m -1 L e b ) P ~ -  rCell 

f2 <<.2 Ue(ds)q t s+2#(( t ,  o0)) [-by (35)] 

~< 2( [0, t/2] )q,/2 + 2/~((t/2, oo )) 

<~2q'/2+2Bexp(-2t/2) [by (34)] 

<~ (C/2m) e x p ( - p t )  for some C, p > 0 (36) 

In the same way, one has for H -  

I[(m ~H- L e b ) P ~ -  ~11 ~ (C/2m) e x p ( - p t )  

This and (36) imply 

II(m-~HLeb)P~,l[ = tl(m-~H + Leb)P  7 -  (m-lH Leb)PT] I 

<<. Cm -I e x p ( - p t )  (37) 

Hence for all q~ ~ Cg(E) 

(H ,  P~q~ )l ~< sup I,p(x)l- m ][(m - t H  Leb)Pt[ [ 
2 ~ E  

~< sup I,p(x)l �9 Cexp( -p t )  

From Proposition 13 and the integrability of fo, F with respect to the 
Lebesgue measure, we see that ~e is well defined and that for some d >  0 

feq) drce<~d'sup]cP(2)], ~o6C2(E) (38) 
2 ~ E 

By letting (p--, 1 in a suitable way, it follows that ~e is a finite measure 
on E. 

I now show that for each e ~ R, ~e is invariant with respect to P~. The 
proof uses the following two lemmas. 

L e m m a  14. For any e ~ R, a finite measure/~ on E is invariant with 
respect to P7 iff SE Le~ ~ d# = 0 for all q) ~ Co(E). 

I . e mm a  15. For each ~ e Cg(E), 
/ x ,  

(foP, V , ~ ) = ( f o V ,  P,~) ,  s,t>O, 
(o(v,x)=~o(-v,x) for ~0: E ~ R  

Lemmas 14 and 15 follow from the following lemma. For the proof of 
Lemma 15 one uses the reversibility property 

(foL~, ~ ) = (foC~, Lt, k ) 
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for functions ff which are twice continuously differentiable and ~, 
L~b e Ll(~O), which can be checked by an easy calculation. 

kemrna  16. For go e Cg(E) or go =-- V, ~'o P, gods is well defined and 
twice continuously differentiable and 

f2 P, go-go=L Psgods, t )O  

For go e C~(E), ~o Psgo dse C~(E). 

Proof. By similar arguments as used in the proof of Proposition 10, 
using Proposition 5. 

Since f0 is the invariant density of J7 ~ we know by Lemma 14 that 

( fo ,  Logo) = 0, goeCo(E ) (39) 

[this corresponds to Eq. (8)]. 
We next show 

(F, Logo) = - ( fo ,  V~go), goeC~(E) (40) 

[which corresponds to Eq. (9)]: For any function h : E ~ R ,  by /~ we 
denote the function E ~ R  defined by [l(v,x)=h(-v,x) .  Then for all 
go e CJtE) 

(F, Logo) = lira s-~(F, Psgo-go) 
s ~ O  

[since, as a consequence of Lemma 11, 

F =  -2 /~a-  2 fo~  P, V dt e LI(E, Leb) and since 

lira s l(p,  go _ go) ~ Log o uniformly] 
s ~ 0  

f o  A A = !irno-- s-12fla-2 (foP, V, P, go) -- (foP, V, go) dt 

[by Lemma 11 ] 

= lim - s  ~2fla -2 (foV, P, go)dt 
s ~ 0  

[by Lemma 15] 

= - 2 / / a - 2 ( f o  V, go) 

[since lira P, go = go uniformly] 
t ~ O  

= ( V J o ,  ~o ) 

= - ( f o ,  v~,go> 

[by partial integration] 

822/55/5-6-15 
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We finally show that 

f :  ( H ,  PTL~q)) d t =  - ( r ,  V~,qg), 

[which corresponds to Eq. (10)]: 

f: f: ( H , P : L ~ q ~ ) d t =  ( H ,  p e t l i m s - ~ ( P ~ p - ( o ) ) d t  
s ~ O  

e e R ,  ~oeCg(E)  (41) 

= l i r a s  1 ( H, pe s ~o _ P~ ~o ) dt 
s - * O  

[by Proposition 13, since 

lira s-~ ( Ws qO - q~ ) = LeO uniformly] 
s ~ 0  

= lira s -~ ( H ,  P~q)) dt 
s ---~ 0 

(H,  q~) 

[since lira P,~o = ~o uniformly] 
s ~ O  

= - ( F ,  Vo~o) 

[by partial integration ] 

Since Le = Lo + eVv, (39)-(41) imply J'E Leq) d~e = 0 for all ~o e C~(E), s o  7~ e 

is invariant with respect to P~ as was claimed. 

P r o p o s i t i o n  17. The function 7: R ~ R ,  7 (e )=~e(E)  is differen- 
tiable at e = 0 with y(0)= 1, ~ '(0)= 0. 

Proo[. 7(0)= 1 is obvious. From Proposition 13 and the defini- 
tion (22) of ~e it follows that 7 is differentiable at e = 0 with derivative 
~ e r d Leb. One easily calculates that ~E F d Leb = - 2fla - 2 ~ e G dno = O. 

Since for each e e R  there exists exactly one invariant probability 
measure for J(~, namely n~ (as shown in Section2), Theorem9 and 
Proposition 17 show that for [el small enough 

/Ze ----- 7-1(e)7~e 

We now finish the proof of Theorem 2. 
By Proposition 4(a), for Vo>(C+ [el)fl -L, we have b~.~,o)P~<~m,,o for 
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all t > 0 .  By (21), this estimate carries over to n~. So the mean velocity 
tSe = ~E V dne is well defined. 

k e m m a  1 8. For e d R  let #e be the finite measure on E defined by 

~od#~= (H,  PTq~) dt, r  

Then Vs  Ll(lle) for all e e R. 

Proof. As a consequence of (33) and Proposition 4(a)(ii), for each 
e E R, there exist D, a > 0 such that for all t > 0, l >  0, 

H .  Leb PT( { v, x) E EI I vl > l} ) ~ O exp( - ~rl) 

{I write H . L e b P ~  for m[(m- iHLeb)PT] ,  m = ~ l H l  dLeb.} It follows 
with (37) in Proposition 13 that for some C, p > 0 

~te( { (v, x ) e  El Ivl > /} )  

f/ 
o~ 

~< II(H Leb)PTI I + / D  e x p ( - a / )  

<~ CO -1 + lD exp( - al) 

which is exponentially decreasing in I. Hence VeLl(lZe). Lemma 18 shows 
that the function ~: R-*  R, ~(e)= ~ Vdfr e is well defined and differentiable 
at e = 0  with derivative g ' (0)= (F,  V). So by Proposition 17, ~e=S VdTr e 
is differentiable at e = 0 with the same derivative, i.e., 

ge = (F, V)  = 2 ~  -2 VG dn 
e = 0  

as was claimed in Theorem 2. 
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